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Recap



Convention

Ideal means normal uniform ideal on w; in this talk.

e If 7 is an ideal then Pz is the associated forcing. It is

P(w1)/ ~z —{[D]~:}

with the order induced by inclusion. Here, A ~7 B iff AAB e T.

e If G is Pz-generic over V then Us = {A | [A]., € G} is a
V-ultrafilter which induces the generic ultrapower

je: V= Ult(V, Ug).



Main Result

Definition

An ideal Z is wi-dense if Pz has a dense subsets of size w;.

That is there is {S; | i < wy) a sequence of subsets of w; so that for any
A€ Tt thereis i <wy with S\A e 7.

Theorem (L.)
If there is an inaccessible k. which is a limit of <k-supercompact
cardinals then there is a stationary set preserving forcing P with

VE = “NS,, is wi-dense’.

Prior to this, the only known models in which NS, is w;-dense were
Qmax-extensions of L(R) assuming ADM®) (or of other canonical models
of AD™).



The Ansatz



Some Heuristics

Consider the Qpax-version of (x):
Definition
Qmax-(#) holds if L(R) = AD and there is a filter G S Qu,ax generic

over L(R) so that
(Mg, Zg) = (Hu,, NSy, ).

e Recall that (Mg, Zg, fg) is the direct limit along G.
e We have (Mg, T) = (H,,, NS, )-®I¢] and that NS, is w;-dense in
L(R)[G].

e Hence Quax-(*) implies “NS,, is w;i-dense”.
By Asperé-Schindler, MM ™ * = (). There should be some forcing
axiom FA which solves

MM*T FA
(*)  Qumax-(*)

So FA implies “NS,, is wi-dense”.




Some Heuristics Il

e lIterate small nice-ish forcings up to a supercompact « via a
RCS-iteration P = (P, Qg | a < 7, 8 < ).

e Invoke an iteration theorem to argue that w; (and suitable additional
structure) is preserved along the iteration.

e Employ Baumgartner's argument to get the forcing axiom.

Here, have “NS,, is wi-dense” in V¥ as witnessed by a sequence
S ={(S; | i < wy) of stationary sets. P is x-cc so that already S € VF
for some a < k.

e Most likely, NS, is not w;-dense in VP
e But then P, ,, must kill stationary sets of VP,

e Also P, . must preserve the IN;-properties of S that hold in V.



Iterating while Killing Stationary
Sets



The First Obstacle

For a stationary S € wy, let CS(S) denote the forcing that shoots a club
through S.

o Let w; =, Sn be a partition into stationary sets.

e Consider the iteration P = (P,, Qp, | n < w, m < w) where
e, Qn = CS(w1 — 5y)

(choose your favorite support).

e In VF, w) is the countable union of non-stationary sets.

e So wy is collapsed.
e Problem: At each step, we go back to V to kill a set from there.
e Solution: Only kill stationary sets that were just added in the

last step!



The Second Obstacle

This is Shelah's example of an iteration of SSP forcings collapsing w; .

e First force a function gy: w1 — wy above all canonical functions.
Then force some g7 above all canonical functions, but below gp.
Continue like this, get

canonical functions < g, < gh—1 < --- < g1 < g mod NS,

at stage n. These forcings preserve stationary sets, but not all are
semiproper. In the limit w; is collapsed (as there is no infinite
decreasing sequence of such functions).

Solution: Mostly use forcings with good “regularity
properties”.



The Iteration Theorem

These are the only two obstacles!
Theorem (L.)

Let (P,, Qﬁ | « <v,8 <) be a RCS-iteration of w;-preserving
forcings and assume that for all o < ~:

e |-p,,, SRP
e I-p, “Qq preserves stationary sets from | | S<a V[Gs]”

Then IP preserves ws.

This is a “cheapo iteration theorem”, but good enough for our purposes.



The Correct Regularity Property

SRP hides the relevant regularity property. What is it?

For now consider an iteration P = (P,, Q,, | n < w, m < w) iteration of
length w of wy-preserving forcings that do not kill “old stationary sets”.

e Want to argue somehow that P preserves ws.
e So must find countable X < Hy and p so that

p I X c X[G].
Let X < Hy countable with P € X. Want to find p, € P, so that (p,)n<w
is decreasing in IP and
pn ke, X = X[G,].
Suppose in step n of this argument, have

e Next forcing Q = Q,(,;"
e S Cw is stationary, S € X[G,] but I-g S € NS,,, and
o X&) := X[G] nwi €S.

Then there is no way to continue! Must avoid this at all cost! 9



The Correct Regularity Property Il

So need to start with X which avoids this problem, i.e. if S € X and Qg
kills S then 6% ¢ S. This is easily possible!
Our regularity property should hand us some pg € Qg with

Po 1@, Xc X[Gl]
Even then, we might end up with the same problem at the next step
X[G1]! So pg must moreover avoid this situation for X[Gi]!

Definition
Say that a countable Y < Hy respects an ideal Z if 6 ¢ S whenever
SeInY.

In other words, need that X[G;] respects the ideal {S < wy | Q; kills S}.

10



Respectful Forcing

Definition

Suppose Q is w-preserving forcing. Q is respectful if: Whenever

e Y < Hy countable, Qe Y, peQnY

eicVYisa Q-name for an ideal on wy.
Then one of the following:

1. There is g < p and g forces
Y = Y[G] A Y[G] respects /€

2. Or: Y does not respect 1P := {Scw; |pl-Sei}.

This is a very strong regularity property! If QQ is respectful and preserves
stationary sets then Q is semiproper, but semiproper forcings need not be
respectful.

11



How to use Respectfulness

Let's get back to our toy problem. Start with X < Hy with P € X so that
X respects {S € wq | Qo kills S}.
Let / be the Qg-name for

{5 < wi | Q< kills S}.

Since QlGl does not kill old sets, X trivially respects 10 C V.
If Qg is respectful then find py so that

po kg, X € X[G1] A X[G1] respects jo.
We are back in the same situation, only one step further. Can chain

these arguments together!

Lemma
If P is a countable support iteration of respectful forcings which do not
kill old stationary sets then P preserves ws.
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The Role of SRP

Unfortunately, RCS iterations of respectful forcings need not be
respectful. But we can simply nuke this problem!

Theorem (L.)
If SRP holds then every wi-preserving forcing is respectful.

Proof: Let Q be wi-preserving, Y < Hyp, ge QN Y, jeY asin
definition. Have to show:

o Either there is r < g forcing Y = Y[G] respects )&
e or Y does not respect /9.

Let p=(21°)* e Y and
={Z < H, | ir < q forcing “Z = Z|[G] respects I°"} € Y.
By SRP, can find continuous increasing Z = (Z, | < wi) € Y si.t.:

O Q7q;iEZO
o Z, < H,

e Either Z, € S or thereisno Z, & Z with Z € §.
13



The Role of SRP Il

Proof (Continued).
Let G < Q generic, ge G. Let S = {a < wy | Z, € S}.

Claim: Se/:= /¢

Proof. Suppose otherwise, S € IT. (Z,[G] | @ < wy) is continuous
increasing sequence of elementary substructures of H‘Y[G]. Find club

C C wy with o = §%o = §%=1C1_ For any a« € S n C, can find

To €1 Z,[G] with a = §%=[¢] € T,,. By normality of /, there is
S<SnCinltand Tsothat T, =T for a € Sy. But then Sy = T,
contradicting T € /.

[
Case 1: 6 € S. AsSei9n Y, Y does not respect /9.
Case2: 6Y ¢S. AsZyyC Y n H, YnH,¢S. Thusthereisr <gq
forcing Y © Y[G] and Y[G] respects /€. O

In L, Add(w1, 1) is not respectful.
14



Additional Structure To Preserve

Recall that we first force a candidate {(S; | i < w1) which might witness
“NS,,, is wi-dense” in the future. This cannot be any random collection
of wi-many stationary sets.

Lemma (Tennenbaum (?))
If P is a forcing of size wy which collapses wy then there is a dense
embedding m: Col(w,wy) — P.

e = Better: First force a candidate m: Col(w,w;) — P(w1)\NSy,. In
the end, want []NSN1 om: Col(w,w;) — Pxs,,, a dense embedding.

e This suggests we should isolate properties of 7, and then iterate
forcing preserving these properties of .
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Owr®)

Definition (Woodin)

O (wr®) holds if there is an embedding 7: Col(w,w;) — P(w1)\NSy,
so that Vp € Col(w, wy) there are stationarily many countable X < H,,
with

p € {qge Col(w,wy) n X |wy n X €n(q)} is a filter generic over X.

Lemma

Suppose [-]xs,,, o m: Col(w,w1) — Pxs,, is a dense embedding. Then
7 witnesses {(w®).

Proof Sketch.

Let p € Col(w,w;), X < H,, countable so that w; n X =: 6% € 7(p).

Let A < Col(w,w1), A€ X, be a maximal antichain.

= A= []xs,, o 7[A] € Pxs,, is a max. antichain, thus AA contains
aclub C e X, so 6X € C. It follows that there is ge X n A with

5% € (q). O 6



More generally {(B) and $*(B)

Definition

Let B < w; be a forcing. {(B) holds if there is an embedding
m: B — P(w1)\NS,, so that Vp € B there are stationarily many
countable X < H,,, with

pe{geBn X |wnXemn(q)} is a filter generic over X.

We call such X 7-slim.
The stronger $(B) holds if there is m witnessing >(BB) so that every
X < Hy with f,B € X is m-slim.

Lemma

If $(wr®) holds then {(B) holds for every forcing B < wy (but not
necessarily $*(B)).
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Parametrized Properness

Definition
Suppose 7 witnesses {(B). A forcing P is w-proper if: Whenever

e X < Hy countable and 7-slim, P € X

e pePn X
Then there is (X, P, 7)-generic g < p, i.e. forces

X = X[G] n V A X[G] is m-slim.

Analogously, define m-semiproperness.

Definition
Suppose 7 witnesses {(B). A set S € w; is w-stationary if for large
enough regular 6 and all clubs C < [Hp]* there is some 7-slim X € C,

X < Hp with 6X € S.
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Iteration Theorems

Suppose 7 witnesses ().

Theorem

Countable support iterations of mw-proper forcings are m-proper

Theorem

RCS iterations of w-semiproper forcings are w-semiproper.
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Thank you for listening!

To be continued...
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