Forcing NS_{ω_1} is ω_1 -Dense From Large Cardinals Part II

A Journey Guided by the Stars

Andreas Lietz TU Wien

February 18, 2024

CMU Core Model Seminar

- 1. Recap
- 2. The Ansatz
- 3. Iterating while Killing Stationary Sets

Recap

Convention

Ideal means normal uniform ideal on ω_1 in this talk.

• If ${\mathcal I}$ is an ideal then ${\mathbb P}_{\mathcal I}$ is the associated forcing. It is

$$P(\omega_1)/\sim_{\mathcal{I}} -\{[\varnothing]_{\sim_{\mathcal{I}}}\}$$

with the order induced by inclusion. Here, $A \sim_{\mathcal{I}} B$ iff $A \triangle B \in \mathcal{I}$.

If G is P_I-generic over V then U_G = {A | [A]_{~I} ∈ G} is a V-ultrafilter which induces the generic ultrapower

$$j_G: V \to \mathrm{Ult}(V, U_G).$$

Main Result

Definition

An ideal \mathcal{I} is ω_1 -dense if $\mathbb{P}_{\mathcal{I}}$ has a dense subsets of size ω_1 . That is there is $\langle S_i \mid i < \omega_1 \rangle$ a sequence of subsets of ω_1 so that for any $A \in \mathcal{I}^+$ there is $i < \omega_1$ with $S_i \backslash A \in \mathcal{I}$.

Theorem (L.)

If there is an inaccessible κ which is a limit of $<\kappa$ -supercompact cardinals then there is a stationary set preserving forcing \mathbb{P} with

 $V^{\mathbb{P}} \models$ "NS_{ω_1} is ω_1 -dense".

Prior to this, the only known models in which NS_{ω_1} is ω_1 -dense were \mathbb{Q}_{\max} -extensions of $L(\mathbb{R})$ assuming $AD^{L(\mathbb{R})}$ (or of other canonical models of AD^+).

The Ansatz

Some Heuristics

Consider the \mathbb{Q}_{\max} -version of (*):

Definition

 \mathbb{Q}_{\max} -(*) holds if $L(\mathbb{R}) \models AD$ and there is a filter $G \subseteq \mathbb{Q}_{\max}$ generic over $L(\mathbb{R})$ so that

$$(M_G, \mathcal{I}_G) = (H_{\omega_2}, \mathrm{NS}_{\omega_1}).$$

- Recall that $(M_G, \mathcal{I}_G, f_G)$ is the direct limit along G.
- We have $(M_G, \mathcal{I}) = (H_{\omega_2}, NS_{\omega_1})^{L(\mathbb{R})[G]}$ and that NS_{ω_1} is ω_1 -dense in $L(\mathbb{R})[G]$.
- Hence \mathbb{Q}_{\max} -(*) implies " NS_{ω_1} is ω_1 -dense".

By Asperó-Schindler, $\rm MM^{++} \Rightarrow (*).$ There should be some forcing axiom $\rm FA$ which solves

$$\frac{\mathrm{MM}^{++}}{(*)} = \frac{\mathrm{FA}}{\mathbb{Q}_{\mathrm{max}}(*)}$$

So FA implies " NS_{ω_1} is ω_1 -dense".

Some Heuristics II

- Iterate small nice-ish forcings up to a supercompact κ via a RCS-iteration $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leq \gamma, \beta < \gamma \rangle$.
- Invoke an iteration theorem to argue that ω_1 (and suitable additional structure) is preserved along the iteration.
- Employ Baumgartner's argument to get the forcing axiom.

Here, have "NS_{ω_1} is ω_1 -dense" in $V^{\mathbb{P}}$ as witnessed by a sequence $\vec{S} = \langle S_i \mid i < \omega_1 \rangle$ of stationary sets. \mathbb{P} is κ -cc so that already $\vec{S} \in V^{\mathbb{P}_{\alpha}}$ for some $\alpha < \kappa$.

- Most likely, NS_{ω_1} is not ω_1 -dense in $V^{\mathbb{P}_{\alpha}}$.
- But then $\mathbb{P}_{\alpha,\kappa}$ must kill stationary sets of $V^{\mathbb{P}_{\alpha}}$.
- Also $\mathbb{P}_{\alpha,\kappa}$ must preserve the Π_1 -properties of \vec{S} that hold in $V^{\mathbb{P}}$.

Iterating while Killing Stationary Sets

The First Obstacle

For a stationary $S \subseteq \omega_1$, let CS(S) denote the forcing that shoots a club through S.

- Let $\omega_1 = \bigcup_n S_n$ be a partition into stationary sets.
- Consider the iteration $\mathbb{P} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_m \mid n \leqslant \omega, m < \omega \rangle$ where

$$\Vdash_{\mathbb{P}_n} \dot{\mathbb{Q}}_n = \mathrm{CS}(\omega_1 - \check{S}_n)$$

(choose your favorite support).

- In $V^{\mathbb{P}}$, ω_1^V is the countable union of non-stationary sets.
- So ω_1^V is collapsed.
- Problem: At each step, we go back to V to kill a set from there.
- Solution: Only kill stationary sets that were just added in the last step!

This is Shelah's example of an iteration of SSP forcings collapsing ω_1 .

 First force a function g₀: ω₁ → ω₁ above all canonical functions. Then force some g₁ above all canonical functions, but below g₀. Continue like this, get

canonical functions $< g_n < g_{n-1} < \cdots < g_1 < g_0 \mod NS_{\omega_1}$

at stage *n*. These forcings preserve stationary sets, but not all are semiproper. In the limit ω_1 is collapsed (as there is no infinite decreasing sequence of such functions).

Solution: Mostly use forcings with good "regularity properties".

These are the only two obstacles!

Theorem (L.)

Let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} | \alpha \leq \gamma, \beta < \gamma \rangle$ be a RCS-iteration of ω_1 -preserving forcings and assume that for all $\alpha < \gamma$:

- $\Vdash_{\mathbb{P}_{\alpha+1}} SRP$
- $\Vdash_{\mathbb{P}_{\alpha}}$ " $\dot{\mathbb{Q}}_{\alpha}$ preserves stationary sets from $\bigcup_{\beta < \alpha} V[\dot{G}_{\beta}]$ "

Then \mathbb{P} preserves ω_1 .

This is a "cheapo iteration theorem", but good enough for our purposes.

 SRP hides the relevant regularity property. What is it?

For now consider an iteration $\mathbb{P} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_m \mid n \leq \omega, m < \omega \rangle$ iteration of length ω of ω_1 -preserving forcings that do not kill "old stationary sets".

- Want to argue somehow that \mathbb{P} preserves ω_1 .
- So must find countable $X < H_{\theta}$ and p so that

$$p \Vdash \check{X} \sqsubseteq \check{X}[\dot{G}].$$

Let $X < H_{\theta}$ countable with $\mathbb{P} \in X$. Want to find $p_n \in \mathbb{P}_n$ so that $(p_n)_{n < \omega}$ is decreasing in \mathbb{P} and

$$p_n \Vdash_{\mathbb{P}_n} \check{X} \sqsubseteq \check{X}[\dot{G}_n].$$

Suppose in step n of this argument, have

• Next forcing $\mathbb{Q} = \dot{\mathbb{Q}}_n^{G_n}$

•
$$S \subseteq \omega_1$$
 is stationary, $S \in X[G_n]$ but $\Vdash_{\mathbb{Q}} \check{S} \in NS_{\omega_1}$ and

•
$$\delta^{X[G_n]} := X[G_n] \cap \omega_1 \in S.$$

Then there is no way to continue! Must avoid this at all cost!

So need to start with X which avoids this problem, i.e. if $S \in X$ and \mathbb{Q}_0 kills S then $\delta^X \notin S$. This is easily possible! Our regularity property should hand us some $p_0 \in \mathbb{Q}_0$ with

$$p_0 \Vdash_{\mathbb{Q}_0} \check{X} \sqsubseteq \check{X}[\dot{G}_1].$$

Even then, we might end up with the same problem at the next step $X[G_1]!$ So p_0 must moreover avoid this situation for $X[G_1]!$

Definition

Say that a countable $Y < H_{\theta}$ respects an ideal \mathcal{I} if $\delta^{Y} \notin S$ whenever $S \in \mathcal{I} \cap Y$.

In other words, need that $X[G_1]$ respects the ideal $\{S \subseteq \omega_1 \mid \mathbb{Q}_1 \text{ kills } S\}$.

Respectful Forcing

Definition

Suppose \mathbb{Q} is ω_1 -preserving forcing. \mathbb{Q} is **respectful** if: Whenever

- $Y < H_{ heta}$ countable, $\mathbb{Q} \in Y$, $p \in \mathbb{Q} \cap Y$
- $I \in Y$ is a \mathbb{Q} -name for an ideal on ω_1 .

Then one of the following:

1. There is $q \leq p$ and q forces

 $Y \sqsubseteq Y[G] \land Y[G]$ respects \dot{I}^G

2. Or: Y does **not** respect $\dot{I}^p := \{S \subseteq \omega_1 \mid p \Vdash \check{S} \in \dot{I}\}.$

This is a very strong regularity property! If \mathbb{Q} is respectful and preserves stationary sets then \mathbb{Q} is semiproper, but semiproper forcings need not be respectful.

How to use Respectfulness

Let's get back to our toy problem. Start with $X < H_{\theta}$ with $\mathbb{P} \in X$ so that X respects $\{S \subseteq \omega_1 \mid \mathbb{Q}_0 \text{ kills } S\}$. Let \dot{I} be the \mathbb{Q}_0 -name for

$$\{S \subseteq \omega_1 \mid \dot{\mathbb{Q}}_1^{G_1} \text{ kills } S\}.$$

Since $\dot{\mathbb{Q}}_1^{G_1}$ does not kill old sets, X trivially respects $\dot{I}^{\mathbb{1}_{Q_0}} \subseteq V$. If \mathbb{Q}_0 is respectful then find p_0 so that

$$p_0 \Vdash_{\mathbb{Q}_0} \check{X} \sqsubseteq \check{X} [\dot{G}_1] \land \check{X} [\dot{G}_1]$$
 respects $\dot{I}^{\dot{G}_1}$.

We are back in the same situation, only one step further. Can chain these arguments together!

Lemma

If \mathbb{P} is a countable support iteration of respectful forcings which do not kill old stationary sets then \mathbb{P} preserves ω_1 .

The Role of SRP

Unfortunately, RCS iterations of respectful forcings need not be respectful. But we can simply nuke this problem!

Theorem (L.)

If SRP holds then every ω_1 -preserving forcing is respectful.

Proof: Let \mathbb{Q} be ω_1 -preserving, $Y < H_{\theta}$, $q \in \mathbb{Q} \cap Y$, $\hat{I} \in Y$ as in definition. Have to show:

- Either there is $r \leq q$ forcing $Y \sqsubseteq Y[G]$ respects \dot{I}^G
- or Y does not respect \dot{I}^q .

Let $\mu = (2^{|Q|})^+ \in Y$ and $S = \{Z < H_{\mu} \mid \nexists r \leq q \text{ forcing } "Z \sqsubseteq Z[G] \text{ respects } \dot{I}^{G"}\} \in Y.$ By SRP, can find continuous increasing $\vec{Z} = \langle Z_{\alpha} \mid \alpha < \omega_1 \rangle \in Y \text{ s.t.:}$

- $\mathbb{Q}, q, \dot{I} \in Z_0$
- $Z_{\alpha} < H_{\mu}$
- Either $Z_{\alpha} \in S$ or there is no $Z_{\alpha} \sqsubseteq Z$ with $Z \in S$.

The Role of SRP II

Proof (Continued).

Let $G \cong \mathbb{Q}$ generic, $q \in G$. Let $S = \{\alpha < \omega_1 \mid Z_\alpha \in S\}$. **Claim:** $S \in I := \dot{I}^G$ *Proof.* Suppose otherwise, $S \in I^+$. $\langle Z_\alpha[G] \mid \alpha < \omega_1 \rangle$ is continuous increasing sequence of elementary substructures of $H^{V[G]}_{\mu}$. Find club $C \subseteq \omega_1$ with $\alpha = \delta^{Z_\alpha} = \delta^{Z_\alpha[G]}$. For any $\alpha \in S \cap C$, can find $T_\alpha \in I \cap Z_\alpha[G]$ with $\alpha = \delta^{Z_\alpha[G]} \in T_\alpha$. By normality of *I*, there is $S_0 \subseteq S \cap C$ in I^+ and *T* so that $T_\alpha = T$ for $\alpha \in S_0$. But then $S_0 \subseteq T$, contradicting $T \in I$.

<u>Case 1</u>: $\delta^{Y} \in S$. As $S \in \dot{I}^{q} \cap Y$, Y does not respect \dot{I}^{q} . <u>Case 2</u>: $\delta^{Y} \notin S$. As $Z_{\delta^{Y}} \sqsubseteq Y \cap H_{\mu}$, $Y \cap H_{\mu} \notin S$. Thus there is $r \leqslant q$ forcing $Y \sqsubseteq Y[G]$ and Y[G] respects \dot{I}^{G} .

In L, $Add(\omega_1, 1)$ is not respectful.

Recall that we first force a candidate $\langle S_i \mid i < \omega_1 \rangle$ which might witness "NS $_{\omega_1}$ is ω_1 -dense" in the future. This cannot be any random collection of ω_1 -many stationary sets.

Lemma (Tennenbaum (?))

If \mathbb{P} is a forcing of size ω_1 which collapses ω_1 then there is a dense embedding $\pi : \operatorname{Col}(\omega, \omega_1) \to \mathbb{P}$.

- \Rightarrow Better: First force a candidate $\pi : \operatorname{Col}(\omega, \omega_1) \to \mathcal{P}(\omega_1) \setminus \operatorname{NS}_{\omega_1}$. In the end, want $[i_{\operatorname{NS}_{\omega_1}} \circ \pi : \operatorname{Col}(\omega, \omega_1) \to \mathbb{P}_{\operatorname{NS}_{\omega_1}}$ a dense embedding.
- This suggests we should isolate properties of π , and then iterate forcing preserving these properties of π .

Definition (Woodin)

 $\langle (\omega_1^{<\omega}) \text{ holds if there is an embedding } \pi \colon \operatorname{Col}(\omega, \omega_1) \to \mathcal{P}(\omega_1) \backslash \operatorname{NS}_{\omega_1}$ so that $\forall p \in \operatorname{Col}(\omega, \omega_1)$ there are stationarily many countable $X < H_{\omega_2}$ with

$$p \in \{q \in \operatorname{Col}(\omega, \omega_1) \cap X \mid \omega_1 \cap X \in \pi(q)\}$$
 is a filter generic over X.

Lemma

 $\begin{array}{l} \textit{Suppose} \ [\cdot]_{\mathrm{NS}_{\omega_1}} \circ \pi \colon \mathrm{Col}(\omega, \omega_1) \to \mathbb{P}_{\mathrm{NS}_{\omega_1}} \ \textit{is a dense embedding. Then} \\ \pi \ \textit{witnesses} \ \diamondsuit(\omega_1^{<\omega}). \end{array}$

Proof Sketch.

Let $p \in \operatorname{Col}(\omega, \omega_1)$, $X \prec H_{\omega_2}$ countable so that $\omega_1 \cap X =: \delta^X \in \pi(p)$. Let $A \subseteq \operatorname{Col}(\omega, \omega_1)$, $A \in X$, be a maximal antichain. $\Rightarrow \mathcal{A} := [\cdot]_{\operatorname{NS}_{\omega_1}} \circ \pi[A] \subseteq \mathbb{P}_{\operatorname{NS}_{\omega_1}}$ is a max. antichain, thus $\triangle \mathcal{A}$ contains a club $C \in X$, so $\delta^X \in C$. It follows that there is $q \in X \cap A$ with $\delta^X \in \pi(q)$.

Definition

Let $\mathbb{B} \subseteq \omega_1$ be a forcing. $\Diamond(\mathbb{B})$ holds if there is an embedding $\pi \colon \mathbb{B} \to \mathcal{P}(\omega_1) \backslash \mathrm{NS}_{\omega_1}$ so that $\forall p \in \mathbb{B}$ there are stationarily many countable $X \prec H_{\omega_2}$ with

 $p \in \{q \in \mathbb{B} \cap X \mid \omega_1 \cap X \in \pi(q)\}$ is a filter generic over X.

We call such X π -slim. The stronger $\diamondsuit^+(\mathbb{B})$ holds if there is π witnessing $\diamondsuit(\mathbb{B})$ so that every $X < H_{\theta}$ with $f, \mathbb{B} \in X$ is π -slim.

Lemma

If $\Diamond(\omega_1^{<\omega})$ holds then $\Diamond(\mathbb{B})$ holds for every forcing $\mathbb{B} \subseteq \omega_1$ (but not necessarily $\Diamond^+(\mathbb{B})$).

Parametrized Properness

Definition

Suppose π witnesses $\Diamond(\mathbb{B})$. A forcing \mathbb{P} is π -**proper** if: Whenever

- $X < H_{\theta}$ countable and π -slim, $\mathbb{P} \in X$
- $p \in \mathbb{P} \cap X$

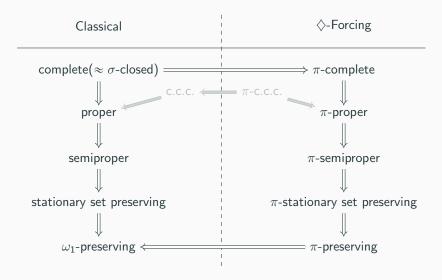
Then there is (X, \mathbb{P}, π) -generic $q \leq p$, i.e. forces

 $X = X[G] \cap V \wedge X[G]$ is π -slim.

Analogously, define π -semiproperness.

Definition

Suppose π witnesses $\Diamond(\mathbb{B})$. A set $S \subseteq \omega_1$ is π -stationary if for large enough regular θ and all clubs $\mathcal{C} \subseteq [H_{\theta}]^{\omega}$ there is some π -slim $X \in \mathcal{C}$, $X < H_{\theta}$ with $\delta^X \in S$.



Suppose π witnesses $\diamondsuit(\mathbb{B})$.

Theorem

Countable support iterations of π -proper forcings are π -proper

Theorem

RCS iterations of π -semiproper forcings are π -semiproper.

Thank you for listening!

To be continued...